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PROBLEMS AND SOLUTIONS

Proposals and solutions must be legible and should appear on separate sheets, each
indicating the name of the sender. Drawings must be suitable for reproduction.
Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
2 June 2012

Problems

36. Proposed by Anastasios Kotronis, Athens, Greece. Evaluate the sum
+∞∑
n=1

n

(
2−1/2 − 1 +

(
1/2
1

)
1
2
−
(

1/2
2

)
1
4

+ · · ·+ (−1)n+1

(
1/2
n

)
1
2n

)

37. Proposed by Mihály Bencze, Braşov, Romania. If A,B ∈ M2(R) then prove
that

2 (detA)2 + det(AB +BA) + 2 (detB)2 ≥ det
(
A2 −B2

)
+ 4 detAB

38. Proposed by Florin Stanescu, School Cioculescu Serban, Gaesti, jud. Dambovita,
Romania. Determine all functions f : [0, 1]→ R that have the following properties

a): f is three times differentiable with f ′′′(x) ≥ 0,∀x ∈ [0, 1];
b): f ′ is increasing and strictly positive;
c): f ′(1)

(
2 (f(1)− f(0))− f ′(1)

) ∫ 1

0
dx

(f ′(x))2
= 1
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39. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzǎu,
Romania. If A,B and C are the angles of a triangle, then prove that:

sink A+ sink B + sink C
A+B + C

≤ 1
3

(
sink A
A

+
sink B
B

+
sink C
C

)
,

where k ∈ (0, 1].

40. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. Find
all distinct positive integers x, y, z, t all greater than 2, such that

x3

x− 1
+

y3

y − 1
+

z3

z − 1
+

t3

t− 1
is an integer.

41. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Ital. Evaluate ∫ π/2

0

4(cosx)2 (ln(cosx))2 dx

42. Proposed by Cristinel Mortici, Valahia University of Târgovişte, Romania. Let
f : R → R be monotone such that f + f ◦ f ◦ f is continuous. Prove that f is
continuous.
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

29. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
1) Let f : (0,∞)→ R be a function that satisfies the property

f(x2) + f(y2)
2

= f(xy)

for any (x, y) ∈ (0,∞). Show that

f(x3) + f(y3) + f(z3)
3

= f(xyz)

for any (x, y, z) ∈ (0,∞).
2) Generalize the above statement, so show that if

f(x2
1) + f(x2

2)
2

= f(x1x2)

for any (x1, x2) ∈ (0,∞), then

f(xn1 ) + f(xn2 ) + . . .+ f(xnn)
n

= f(x1x2 . . . xn)

for any (x1, x2, . . . , xn) ∈ (0,∞) and n a positive integer greater than 1.

Solution 1 by AN-anduud Problem Solving Group, Ulaanbaatar, Mon-
golia. 1) On account of the condition in the statement, we have

f(x3) + f(y3) + f(z3) + f(xyz)
4

=
1
2

f
(

(x
3
2 )2
)

+ f
(

(y
3
2 )2
)

2
+
f
(

(z
3
2

)2

) + f
(

((xyz)
3
2 )2
)

2


=

1
2

(
f
(

(xy)
3
2

)
+ f

(
z

3
2 (xyz)

1
2

))
=

1
2

(
f
(

((xy)
3
4 )2
)

+ f
(

(z
3
4 (xyz)

1
4 )2
))

= f
(

(xy)
3
4 · z 3

4 · (xyz) 1
4

)
= f(xyz)

Hence,
f(x3) + f(y3) + f(z3)

3
= f(xyz)

2) First, we prove the statement for n = 2k arguing by mathematical induction.
Indeed, when n = 2 it trivially holds. Now suppose that for n = 2k is true and
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then we prove it for n = 2k+1. By the given condition, we have

1
2k+1

2k+1∑
i=1

f(x2k+1

i ) =
1
2k

2k∑
i=1

1
2

(
f(x2k+1

i ) + f(x2k+1

2k+i)
)

=
1
2k

2k∑
i=1

f
(

(xi · x2k+i)
2k
)

(by the hypothesis)
= f(x1x2 · · ·x2k+1)

Thus our claim is proved. Now assume that 2k < n < 2k+1 = N and we choose
xn+1, xn+2, . . . , xN such that xn+1 = xn+2 = · · · = xN = (x1x2 · · ·xn)

1
n . Then

f(xn1 ) + · · ·+ f(xnn) + f(xnn+1) + · · ·+ f(xnN )
N

=
f((x

n
N
1 )N ) + · · ·+ f((x

n
N
n )N ) + f((x

n
N
n+1)N ) + · · ·+ f((x

n
N

N )N )
N

= f
(
(x1 · · ·xn)

n
N · (xn+1 · · ·xN )

n
N

)
= f

(
(x1 · · ·xn)

n
N · (x1 · · ·xn)

N−n
n · nN

)
= f(x1 · · ·xn)

Hence,
f(xn1 ) + · · ·+ f(xnn)

n
= f(x1 · · ·xn)

as we wanted to prove.

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. We prove directly generalization 2). Indeed, let
f : (0,∞)→ R be a function that satisfies

∀ (x, y) ∈ (0,∞)2,
f(x2) + f(y2)

2
= f(xy) (1)

We will consider two cases according to the value of f(1) :
(a): f(1) = 0. Choosing y = 1 in (1) we see that f(x2) = 2f(x) for every
x > 0. Using this from (1) we have for all (x, y) ∈ (0,∞)2,

f(x) + f(y) = f(xy)

Now, it is a straightforward task to show by induction on n that for every
integer n > 1 and for all , (x1, . . . , xn) ∈ (0,+∞)n, that

f(x1) + f(x2) + · · ·+ f(xn) = f(x1x2 · · ·xn)

Also, choosing x1 = x2 = · · · = xn = t we get nf(t) = f(tn) for every t > 0.
So, for all (x1, . . . , xn) ∈ (0,+∞)n is

f(xn1 ) + f(xn2 ) + . . .+ f(xnn)
n

= f(x1x2 · · ·xn)

as desired.
(b): f(1) 6= 0. In this case we obtain the conclusion by applying the preceding

case to the function f : (0,∞)→ R defined by f(x) = f(x)− f(1).
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Also solved by Islam Foniqi, Department of Mathematics, Prishtinë, Re-
public of Kosova; Adrian Naco, Department of Mathematics, Polytech-
nic University of Tirana, Albania; Florin Stanescu, Serban Cioculescu
School, Gaesti, Dambovita, Romania; and the proposer

30. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzǎu,
Romania. Evaluate

lim
x→0

∫ 2012 x

2011 x

sinn t
tm

dt,

where n,m ∈ N.

Solution by Anastasios Kotronis, Athens, Greece. More generally, let 0 <
a < b and n,m ∈ N. We consider the following cases:

(1) For n−m ≥ −1 we have∫ bx

ax

sinn t
tm

dt =
∫ bx

ax

tn−m
(
1 +O(t2)

)n
=
∫ bx

ax

tn−m
(
1 +O(t2)

)
=
∫ bx

ax

tn−m +O
(
tn−m+2

)
dt

=



tn−m+1

n−m+1

∣∣∣∣∣
bx

ax

+O

 tn−m+3

n−m+3

∣∣∣∣∣
bx

ax

 , n−m ≥ 0

ln |t|
∣∣∣bx
ax

+O
(
t2
∣∣∣bx
ax

)
, n−m = −1

=


bn−m+1−an−m+1

n−m+1 xn−m+1 +O(xn−m+3), n−m ≥ 0

ln b
a +O(x2), n−m = −1

x→0−−−→

{
0, n−m ≥ 0
ln b

a , n−m = −1
.

Carrying out the change of variable t = −y, we get∫ bx

ax

sinnt

tm
dt = (−1)n−m+1

∫ b(−x)

a(−x)

sinn y
ym

dy, (1)

(2) For n−m ≤ −2 we distinguish two cases:
• If n−m is odd, then for some 0 < ε < 1 and while x→ 0+ we have

(1− ε) ≤ sin t
t
≤ 1⇒ (1− ε)n

tm−n
≤ sinn t

tm
≤ 1
tm−n

and

(1− ε)n bn−m+1 − an−m+1

(n−m+ 1)xm−n−1
≤
∫ bx

ax

sinn t
tm

≤ bn−m+1 − an−m+1

(n−m+ 1)xm−n−1
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Thus limx→0+

∫ bx
ax

sinn t
tm dt = +∞ and from (1)

lim
x→0−

∫ bx

ax

sinn t
tm

dt = lim
x→0+

∫ bx

ax

sinn t
tm

dt = +∞

• If n−m is even, then similarly while x→ 0+ we have

(1− ε)n bn−m+1 − an−m+1

(n−m+ 1)xm−n−1
≤
∫ bx

ax

sinn t
tm

≤ bn−m+1 − an−m+1

(n−m+ 1)xm−n−1

Thus limx→0+

∫ bx
ax

sinn t
tm dt = +∞ and from (1)

lim
x→0−

∫ bx

ax

sinn t
tm

dt = lim
x→0+

−
∫ bx

ax

sinn t
tm

dt = −∞

and the limit does not exist.
Finally, collecting yields

lim
x→0

∫ bx

ax

sinn t
tm

dt


= 0, n−m ≥ 0
= ln b

a , n−m = −1
= +∞, n−m ≤ −2 and n−m = odd
does not exist, n−m ≤ −2 and n−m = even

Also solved by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria; Paolo Perfetti, Department of Mathema-
tics, Tor Vergata University, Rome, Italy; and the proposer

31. (Correction) Proposed by Valmir Bucaj, Texas Lutheran University, Seguin,
TX. If the vertices of a polygon, in clockwise order, are:(

1
√
a1
,

1
√
an+1

)
,

(
2
√
a2
,

1
√
a2n

)
,

(
3
√
a3
,

1
√
a2n−1

)
,

(
4
√
a4
,

1
√
a2n−2

)
, . . . ,(

n− 1
√
an−1

,
1

√
an+3

)
,

(
n
√
an
,

1
√
an+2

)
,

where (an)n≥1 is a decreasing geometric progression, show that the area of this
polygon is

A =
1

4
√
a1

(
(n+ 3)(n− 2)
√
a2n+2

− n(n+ 1)
√
a2n

+
6

√
an+2

)
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Let P1 =

(
1√
a1
, 1√

an+1

)
and for 2 ≤ k ≤ n let

Pk =
(

k√
ak
, 1√

a2n+2−k

)
. Then the area A of the polygon (P1, P2, . . . , Pn) is given

by

A =
1
2

n−1∑
k=2

det(
−−−−−→
P1Pk+1,

−−−→
P1Pk)

=
1
2

n−1∑
k=2

∣∣∣∣∣
k+1√
ak+1

− 1√
a1

k√
ak
− 1√

a1
1√

a2n+1−k
− 1√

an+1

1√
a2n+2−k

− 1√
an+1

∣∣∣∣∣
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Noting that aka2n+1−k = a1a2n and ak+1a2n+2−k = a1a2n+2 we conclude that

A =
n−1∑
k=2

(
k + 1

√
a1a2n+2

− k
√
a1a2n

− 1
√
an+1

(
k + 1
√
ak+1

− k
√
ak

)
− 1
√
a1

(
1

√
a2n+2−k

− 1
√
a2n+1−k

))
=
n(n+ 1)− 6
2√a1a2n+2

− n(n− 1)− 2
2
√
a1a2n

− 1
√
an+1

(
n
√
an
− 2
√
a2

)
− 1
√
a1

(
1
√
a2n
− 1
√
an+2

)
But an+1an = a1a2n and a2an+1 = a1an+2. So, the above formula simplifies to

A =
1

4
√
a1

(
(n+ 3)(n− 2)
√
a2n+2

− n(n+ 1)
√
a2n

+
6

√
an+2

)
as claimed.

Also solved by the proposer.

32. Proposed by Mihály Bencze, Braşov, Romania. Let f : [a, b]→ R be a two times
differentiable function such that f ′′ and f ′ are continuous. If m = min

x∈[a,b]
f ′′(x) and

M = max
x∈[a,b]

f ′′(x), then prove that

m (b2 − a2)
2

≤ bf ′(b)− af ′(a)− f(b) + f(a) ≤ M (b2 − a2)
2

Solution by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy. We have

f(b)− f(a) =
∫ b

a

f ′(x)dx = xf ′(x)
∣∣∣b
a
−
∫ b

a

xf ′′(x) dx

from which follows

bf ′(b)− af ′(a)− f(b) + f(a) =
∫ b

a

xf ′′(x) dx

Moreover,

min
x∈[a,b]

f ′′(x)
∫ b

a

xdx ≤
∫ b

a

xf ′′(x)dx ≤ max
x∈[a,b]

f ′′(x)
∫ b

a

xdx

and then

m
b2 − a2

2
≤
∫ b

a

xf ′′(x)dx ≤M b2 − a2

2
concluding the proof.

Also solved by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria; Angel Plaza, Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Spain; Florin Stanescu,
Serban Cioculescu School, Gaesti, Dambovita, Romania; AN-anduud
Problem Solving Group, Ulaanbaatar, Mongolia; and the proposer.
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33. Proposed by Ovidiu Furdui, Cluj, Romania. Find the value of

lim
n→∞

∫ π/2

0

n
√

sinn x+ cosn x dx

Solution by Moubinool Omarjee, Paris France. Let fn(x) = n
√

sinn x+ cosn x =
fn
(
π
2 − x

)
. Then, ∫ π

2

0

fn(x)dx = 2
∫ π

4

0

fn(x) dx

Let us denote by

yn =
∫ π

4

0

fn(x)dx =
∫ π

4

0

cosx (1 + (tanx)n)
1
n dx

The functions gn(x) = cosx (1 + (tanx)n)
1
n are continuous on

[
0; π4

]
and the se-

quence (gn) converges to the function x 7→ cosx on
[
0; π4

]
as can be easily checked.

Furthermore,

|gn(x)| ≤ cosx
(

1 +
(

tan
π

4

)n) 1
n

≤ cosx · 2 1
n ≤ cosx · 2 ≤ 2

So, by the Dominated Convergence theorem, we have

lim
n→∞

yn =
∫ π

4

0

cosx dx =
√

2
2

Finally,

lim
n→∞

∫ π
2

0

n
√

sinn x+ cosn x dx = 2 ·
√

2
2

=
√

2

Also solved by Albert Stadler, Switzerland; Moubinnol Omarjee, Paris,
France; Omran Kouba, Higher Institute for Applied Sciences and Tech-
nology, Damascus, Syria; Anastasios Kotronis, Athens, Greece; Paolo
Perfetti, Department of Mathematics, Tor Vergata University, Rome,
Italy; and the proposer

34. Proposed by Mihály Bencze, Braşov, Romania. Solve the following equation√
2 +

√
2 + . . .+

√
2 + x︸ ︷︷ ︸

n-times

+

√
2−

√
2 + . . .+

√
2 + x︸ ︷︷ ︸

n-times

= x
√

2,

where n ≥ 3.

Solution by Islam Foniqi, Department of Mathematics, Prishtinë, Re-
public of Kosova. We see that x has to be in (0, 2), so we can take x = 2 cos y
where 0 < y < π

2 . Using the formula
√

2(1 + cos 2a) = 2 cos a, we have√
2 +

√
2 + · · ·+

√
2 + x︸ ︷︷ ︸

(n−1)−times

= 2 cos
y

2n−1
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and the given equation becomes√
2(1 + cos

y

2n−1
) +

√
2(1− cos

y

2n−1
) = 2

√
2 cos y

or
cos

y

2n
+ sin

y

2n
=
√

2 cos y

which can be written as
cos(

y

2n
− π

4
) = cos y

Now y
2n −

π
4 = y or y

2n −
π
4 = −y which is equivalent to y(1 − 1

2n ) = −π4 or
y(1+ 1

2n ) = π
4 , with 0 < y < π

2 . The equation y(1− 1
2n ) = −π4 does not have solution

because n ≥ 3 and 0 < y < π
2 , but the equation y(1 + 1

2n ) = π
4 has the solution

y = 2nπ
4(2n+1) which is clearly between 0 and π

2 . Therefore, x = 2 cos y = 2 cos 2nπ
4(2n+1)

when n ≥ 3.

Also solved by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria; AN-anduud Problem Solving Group,
Ulaanbaatar, Mongolia; and the proposer

35. Proposed by Florin Stǎnescu, School Cioculescu Serban, Gǎeşti, jud. Dambovita,
Romania. Let P (x) = anx

n+an−1x
n−1 + . . .+a1x+a0 be a polynomial with posi-

tive real coefficients of degree n ≥ 3, such that P ′ has only real zeros. If 0 ≤ a < b
show that ∫ b

a
1

P ′(x)dx∫ b
a

1
P ′′(x)dx

≥ 1
b− a

ln
(
P ′(b)
P ′(a)

)
≥ P ′(b)− P ′(a)

P (b)− P (a)

Solution by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy. The roots of P ′(x) = 0 are evidently all negative and

P ′(x) = nan

n−1∏
k=1

(x− ξk), ξk < 0, 1 ≤ k ≤ n− 1

Thus we have
P ′′(x)
P ′(x)

=
n−1∑
k=1

1
x− ξk

that it is a decreasing function as well as 1
P ′(x) and 1

P ′′(x) . Now

ln
(
P ′(b)
P ′(a)

)
=
∫ b

a

P ′′(x)
P ′(x)

dx

∫ b

a

P ′′(x)
P ′(x)

dx ·
∫ b

a

1
P ′′(x)

dx ≤ (b− a)
∫ b

a

1
P ′(x)

dx

on account of Chebyshev’s inequality for integrals applied to decreasing (increasing)
functions. This proves the LHS inequality.

The RHS inequality is actually∫ b

a

P ′′(x)
P ′(x)

dx ≥ (b− a)

∫ b
a
P ′′(x) dx∫ b

a
P ′(x) dx
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That is, ∫ b

a

P ′(x)dx ·
∫ b

a

P ′′(x)
P ′(x)

dx ≥ (b− a)
∫ b

a

P ′′(x) dx

and this follows also by applying Chebyshev’s result again with P ′(x) increasing
while P ′′(x)

P ′(x) is decreasing.

Comment by the Editor. This problem has appeared as part of the following
paper by the same author: Aplicaţi ale inegalitǎţii lui Cebişev in formǎ integralǎ,
Gazeta Matematicǎ, Seria B, Anul CXVII, nr. 3 (2012) 113–121.

Also solved by Omran Kouba, Higher Institute for Applied Sciences
and Technology, Damascus, Syria; AN-anduud Problem Solving Group,
Ulaanbaatar, Mongolia; and the proposer
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MATHCONTEST SECTION

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
26. Let f : [0, 1] → [0, 1] be a differentiable function such that |f ′(x)| 6= 1 for all
x ∈ [0, 1]. Show that there exist two unique points α, β ∈ [0, 1] such that f(α) = α
and f(β) = 1− β.

27. Prove that the equation

(x+ y
√

3)4 + (z + t
√

3)4 = 7 + 6
√

3

does not have rational solutions.

28. Find all polynomials p(x) with real coefficients such that

p(a+ b− 2c) + p(b+ c− 2a) + p(c+ a− 2b) = 3p(a− b) + 3p(b− c) + 3p(c− a)

for all a, b, c ∈ R.

29. Equation x3 − 2x2 − x + 1 = 0 has three real roots a > b > c. Find the value
of ab2 + bc2 + ca2.

30. Let {an}n≥1 be a strictly increasing sequence of positive integers such that

lim
n→+∞

an+1

a1a2 . . . an
= +∞. Prove that

∞∑
n=1

1
an

is an irrational number.
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Solutions
21. Let a > −3/4 be a real number. Show that

3

√
a+ 1

2
+
a+ 3

6

√
4a+ 3

3
+

3

√
a+ 1

2
− a+ 3

6

√
4a+ 3

3

is an integer and determine its value.

(XXVI Spanish Math Olympiad 1989-1990)

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. Putting

x =
3

√
a+ 1

2
+
a+ 3

6

√
4a+ 3

3
and y =

3

√
a+ 1

2
− a+ 3

6

√
4a+ 3

3

and adding up and multiplying up the preceding expressions, we get x+ y = a+ 1
and xy = −a3/27, respectively. Now, we call z = 3

√
x + 3
√
y and rising to cube,

yields

z3 = x+ y + 3 3
√
xy
(

3
√
x+ 3
√
y
)

= a+ 1− az

or equivalently,

z3 + az − (a+ 1) = 0⇔ (z − 1)(z2 + z + a+ 1) = 0

Since the discriminant of z2 + z + a+ 1 = 0 is δ = −(3 + 4q) < 0, then it does not
have real roots. So,

3

√
a+ 1

2
+
a+ 3

6

√
4a+ 3

3
+

3

√
a+ 1

2
− a+ 3

6

√
4a+ 3

3
= 1

and we are done. 2

Also solved by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain

22. Let a1, a2, a3, a4 be nonzero real numbers defined by ak =
sin(kβ + α)

sin kβ
, (1 ≤

k ≤ 4), α, β ∈ R. Calculate

∣∣∣∣∣∣
1 + a2

1 + a2
2 a1 + a2 + 1/a4 1 + a2(a1 + a3)

a1 + a2 + 1/a4 2 + 1/a2
4 a2 + a3 + 1/a4

1 + a2(a1 + a3) a2 + a3 + 1/a4 1 + a2
2 + a2

3

∣∣∣∣∣∣
(József Wildt Mathematics Competition 2005)
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Solution by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain. First, we evaluate

∆ =

∣∣∣∣∣∣
a1 1 a2

1 1/a4 1
a2 1 a3

∣∣∣∣∣∣ =
1
a4

∣∣∣∣∣∣
a1 1 a2

a4 1 a4

a2 1 a3

∣∣∣∣∣∣
=

1
a4

[a1(a3 − a4) + a2(a4 − a2) + a4(a2 − a3)]

Taking into account that

ak − ah =
sin(kβ + α)

sin kβ
− sin(hβ + α)

sinhβ

=
sin(kβ + α) sinhβ − sin(hβ + α) sin kβ

sin kβ sinhβ

=
1
2

cos[(k − h)β + α]− cos[(k − h)β − α]
sin kβ sinhβ

= − sin(k − h)β sinα
sin kβ sinhβ

we have

∆ =
− sinα

sin(4β + α)

[
sin 3β sin(2β + α)− sin 2β sin(β + α)

sin 2β sin 3β
− sinβ sin(4β + α)

sin 2β sin 3β

]
=

− sinα
sin(4β + α)

[
sin(4β + α) sinβ

sin 2β sin 3β
− sin(4β + α) sinβ

sin 2β sin 3β

]
= 0.

Now, it is easy to see by direct calculations that∣∣∣∣∣∣
1 + a2

1 + a2
2 a1 + a2 + 1/a4 1 + a2(a1 + a3)

a1 + a2 + 1/a4 2 + 1/a2
4 a2 + a3 + 1/a4

1 + a2(a1 + a3) a2 + a3 + 1/a4 1 + a2
2 + a2

3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a1 1 a2

1 1/a4 1
a2 1 a3

∣∣∣∣∣∣
2

= 0

and we are done. 2

Also solved by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain

23. Let A be a set of positive integers. If the prime divisors of elements in A are
among the prime numbers p1, p2, . . . , pn and |A| > 3 · 2n + 1, then show that it
contains one subset of four distinct elements whose product is the fourth power of
an integer.

(Training Sessions of Catalonia Team for OME 2012)

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. To each element a in A we associate an n-tuple (x1, x2, . . . , xn), where xi
is 0 if the exponent of pi in the prime factorization of a is even, and 1 otherwise.
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These n-tuples are the “pigeons”. The “holes” are the 2n possible choices of 0′s
and 1′s. Hence, by the PHP, every subset of 2n + 1 elements of A contains two
distinct elements say a11, a12 with the same associated n-tuple, and the product
of these two elements is then a square, as all exponents are even. Thus,

√
a11a12

is an integer. Likewise, from the remaining numbers in A we can choose a21 and
a22 such that

√
a21a22 is an integer. Similarly, from the set A, which has at least

3 · 2n + 1 elements, we can select 2n + 1 such pairs or more. Consider the 2n + 1
integer numbers that are the square roots of products of the two elements of each
pair. That is,

√
a11a12,

√
a21a22,

√
a31a32, . . . ,

√
a2n+1,1a2n+1,2

Since all the previous numbers have the same divisors, the previous arguments give
us two of them

√
ai1ai2,

√
aj1aj2 with the same 0−1 n-tuple. The product of them

is a perfect square √
ai1ai2 ·

√
aj1aj2 = x2,

where x is an integer. So, ai1ai2aj1aj2 = x4 and we are done.
2

Also solved by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain

24. Find all triples (x, y, z) of real numbers such that

12x− 4z2 = 25,
24y − 36x2 = 1,
20z − 16y2 = 9.


(Training Sessions for COM-2011)

Solution by José Luis Dı́az-Barrero and José Gibergans Báguena, BARCE-
LONA TECH, Barcelona, Spain. First, we write the given system in the most
convenient form

12x = 25 + 4z2,
24y = 1 + 36x2,
20z = 9 + 16y2.


Subtracting 20z to both members of the first equation, 12x to the second, and 24y
to the third, we obtain

12x− 20z = 25 + 4z2 − 20z,
24y − 12x = 1 + 36x2 − 12x,
20z − 24y = 9 + 16y2 − 24y.

⇔ 12x− 20z = (5− 2z)2,
24y − 12x = (1− 6x)2,
20z − 24y = (3− 4y)2.


Adding up the last three equations, yields

(1− 6x)2 + (3− 4y)2 + (5− 2z)2 = 0

which is possible only when
1− 6x = 0,
3− 4y = 0,
5− 2z = 0.


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But, triple (1/6, 3/4, 5/2) does not satisfy the system and therefore it does not have
solution.

2

Also solved by Iván Geffner Fuenmayor, BARCELONA TECH, Barcelona,
Spain.

25. Let a, b, c be the lengths of the sides of a triangle ABC with inradius r and
cicumradius R. Prove that

r

2r +R
≤ 3

√(
a

b+ c+ 2a

)(
b

c+ a+ 2b

)(
c

a+ b+ 2c

)
≤ 1

4

(Training Sessions of Spanish Math Team for IMO 2011)

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. To prove the LHS inequality we can assume that a+ b+ c = 1 on account
of the homogeneity. Consider the function f : (0,+∞)→ R define by f(t) = t

1+t :
Then, we have f ′(t) = (1 + t)−2 and f ′′(t) = −2(1 + t)−3 < 0 for all t > 0. So, f is
concave and applying Jensen’s inequality, we have

f

(
a+ b+ c

3

)
≥ 1

3
(f(a) + f(b) + f(c))

That is,

1
4

=
(a+ b+ c)/3

1 + (a+ b+ c)/3
≥ 1

3

(
a

1 + a
+

b

1 + b
+

c

1 + c

)
≥ 3

√(
a

1 + a

)(
b

1 + b

)(
c

1 + c

)

= 3

√(
a

b+ c+ 2a

)(
b

c+ a+ 2b

)(
c

a+ b+ 2c

)
on account of AM-GM inequality. On the other hand, we have that

b

c
+
c

b
≤ R

r
(cyclic)

In fact, using the duality principle, there exist three positive numbers x, y, z such
that a = y + z, b = z + x and c = x+ y for which

R =
(x+ y)(y + z)(z + x)

4
√

(x+ y + z)xyz
and r =

√
xyz

x+ y + z

Then,
R

r
=

(x+ y)(y + z)(z + x)
4xyz

and
b

c
+
c

b
=
z + x

x+ y
+
x+ y

z + x

Now, we will see that

(x+ y)(y + z)(z + x)
4xyz

≥ z + x

x+ y
+
x+ y

z + x
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or equivalently,
y + z

4xyz
≥ 1

(x+ y)2
+

1
(z + x)2

which follows immediately from the fact that (x+ y)2 ≥ 4xy and (z + x)2 ≥ 4zx.

From the preceding and taking into account GM-HM inequalities, we have

3

√(
a

b+ c+ 2a

)(
b

c+ a+ 2b

)(
c

a+ b+ 2c

)

≥ 3
(
b+ c+ 2a

a
+
c+ a+ 2b

b
+
a+ b+ 2c

c

)−1

≥ 3
(

6 +
(
a

b
+
b

a

)
+
(
b

c
+
c

b

)
+
( c
a

+
a

c

))−1

≥ r

2r +R

Equality holds when a = b = c because in this case R = 2r and we are done.
2

Also solved by Iván Geffner Fuenmayor, BARCELONA TECH, Barcelona,
Spain and José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain.



85

MATHNOTES SECTION

Note on an Algebraic Inequality

Vandanjav Adiyasuren and Bold Sanchir

Abstract. In this note a constrained inequality is generalized.

1. Introduction

In [1] the following problem was posted: Let n be a positive integer. Find the largest
constant cn > 0 such that, for all positive real numbers a1, ..., an,

1
a2
1

+ · · ·+ 1
a2
n

+
1

(a1 + · · ·+ an)2
≥ cn

(
1
a1

+ · · ·+ 1
an

+
1

a1 + · · ·+ an

)2

A solution to the preceding proposal and some related results appeared in [2]. Our
aim in this short note is to generalize it.

2. Main Results

Theroem 1. For all positive numbers a1, . . . , an and for all positive integer p > 1,
the following inequality holds:

1
ap1

+ . . .+
1
apn

+
1

(a1 + . . .+ an)p
≥ cn(p)

(
1
a1

+ . . .+
1
an

+
1

a1 + . . .+ an

)p
, (2)

where cn(p) = (n3+1)p(
n

2p−1
p−1 +1

)p−1

(n2+1)p
.

Proof. Denote

A =
1
a1

+ . . .+
1
an

+
1

a1 + . . .+ an
, B =

1
a1

+ . . .+
1
an

By applying Hölder’s Inequality, we get
1
ap1

+ · · ·+ 1
apn

+
1

(a1 + . . .+ an)p
(3)

≥
(

1
a1

+ · · ·+ 1
an

+
1

n(a1 + . . .+ an)

)p 1
(1 + . . .+ 1 + 1

n
p
p−1

)p−1

=
np

(n
2p−1
p−1 + 1)p−1

(
1
n
A+

n(n− 1)
n2 + 1

B +
n− 1

n(n2 + 1)
B

)p
Applying Cauchy-Schwarz Inequality, we have

1
a1

+ · · ·+ 1
an
≥ n2

a1 + . . .+ an
(4)

From (3), (4) we get (2). �
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Corllary 1. Let a1, . . . , an be positive numbers. Then

1
a2
1

+ . . .+
1
a2
n

+
1

(a1 + . . .+ an)2
≥ n3 + 1

(n2 + 1)2

(
1
a1

+ . . .+
1
an

+
1

a1 + . . .+ an

)2

(5)

Proof. Choosing p = 2 in (2), we get (5). �

Theroem 2. Let n,m, k be positive integers. For all positive real numbers a1, . . . , an
and α, β > 0 with kβ −mα > 0, k > m, p > 1, we hve∑

1≤i1<...<im≤n

1
(ai1 + . . .+ aim)p

+
∑

1≤i1<···<ik≤n

1
(ai1 + . . .+ aik)p

≥ c[p]n;m;k(α, β)

 ∑
1≤i1<...<im≤n

α

ai1 + . . .+ aim
+

∑
1≤i1<...<ik≤n

β

ai1 + . . .+ aik

p
(6)

where

c
[p]
n;m;k(α, β) =

kpmp

(m
p
p−1 (nk ) + k

p
p−1 (nm))p−1

(
1
kβ

+
(km)(kβ − αm)

βm(βm(n−mk−m) + αk(km))

)p
(7)

Proof. Denote

A =
∑

1≤i1<...<im≤n

α

ai1 + . . .+ aim
+

∑
1≤i1<...<ik≤n

β

ai1 + . . .+ aik
,

B =
∑

1≤i1<...<im≤n

1
ai1 + . . .+ aim

.

Using Hölder’s Inequality, we get

L :=
∑

1≤i1<...<im≤n

1
(ai1 + . . .+ aim)p

+
∑

1≤i1<...<ik≤n

1
(ai1 + . . .+ aik)p

(8)

≥

 1
m

∑
1≤i1<...<im<n

1
ai1 + . . .+ aim

+
1
k

∑
1≤i1<...<ik≤n

1
ai1 + . . .+ aik

p

× 1(
(nm)

m
p
p−1

+ (nk)
k

p
p−1

)p−1

=

 1
kβ
A+

kβ −mα
mβk

∑
1≤i1<...<im≤n

1
ai1 + . . .+ aim

p

× kpmp

(m
p
p−1 (nk ) + k

p
p−1 (nm))p−1

=

(
1
kβ
A+

(kβ −mα)(n−mk−m)

k(βm(n−mk−m) + αk(km))
B +

α(km)(kβ −mα)
mβ(βm(n−mk−m) + αk(km))

B

)p
× kpmp

(m
p
p−1 (nk ) + k

p
p−1 (nm))p−1
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Using Cauchy-Schwarz inequality, we get∑
1≤i1<...<im≤n

1
ai1 + . . .+ aim

(9)

=
1

(n−mk−m)

∑
1≤i1<...<ik≤n

(
1

ai1 + . . .+ aim
+ . . .+

1
aik−m+1 + . . .+ aik︸ ︷︷ ︸

(km)

)

≥ 1
(n−mk−m)

∑
1≤i1<...<ik≤n

(
k
m

)2
(km)mk (ai1 + . . .+ aik)

=
k(km)

m(n−mk−m)

∑
1≤i1<...<ik≤n

1
ai1 + · · ·+ aik

Using (8), (9) we get

L =
∑

1≤i1<...<im≤n

1
(ai1 + . . .+ aim)p

+
∑

1≤i1<...<ik≤n

1
(ai1 + . . .+ aik)p

≥ kpmp

(m
p
p−1 (nk ) + k

p
p−1 (nm))p−1

(
1
kβ
A+

α(km)(kβ −mα)
mβ(βm(n−mk−m) + αk(km))

B

+
(kβ −mα)(n−mk−m)

k(βm(n−mk−m) + αk(km))
k(km)

m(n−mk−m)

∑
1≤i1<...<ik≤n

1
ai1 + . . .+ aik

p

= c
[p]
n;m;k(α, β)

 ∑
1≤i1<...<im≤n

α

ai1 + . . .+ aim
+

∑
1≤i1<...<im≤n

β

ai1 + . . .+ aik

p
Equality occurs when a1 = · · · = an. �
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