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PROBLEMS AND SOLUTIONS

Proposals and solutions must be legible and should appear on separate sheets, each
indicating the name of the sender. Drawings must be suitable for reproduction.
Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
2 April 2012

Problems

29. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
1) Let f : (0,∞)→ R be a function that satisfies the property

f(x2) + f(y2)
2

= f(xy)

for any (x, y) ∈ (0,∞). Show that

f(x3) + f(y3) + f(z3)
3

= f(xyz)

for any (x, y, z) ∈ (0,∞).
2) Generalize the above statement, so show that if

f(x2
1) + f(x2

2)
2

= f(x1x2)

for any (x1, x2) ∈ (0,∞), then

f(xn1 ) + f(xn2 ) + . . .+ f(xnn)
n

= f(x1x2 . . . xn)
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for any (x1, x2, . . . , xn) ∈ (0,∞) and n a positive integer greater than 1.

30. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau,
Romania. Evaluate:

lim
x→0

∫ 2012 x

2011 x

sinn t
tm

dt,

where n,m ∈ N.

31. Proposed by Valmir Bucaj, Texas Lutheran University, Seguin, TX. If the
vertices of a polygon, in counterclockwise order, are:(

1
√
a1
,

1
√
an+1

)
,

(
2
√
a2
,

1
√
a2n

)
,

(
3
√
a3
,

1
√
a2n−1

)
,

(
4
√
a4
,

1
√
a2n−2

)
, . . . ,(

n− 1
√
an−1

,
1

√
an+3

)
,

(
n
√
an
,

1
√
an+2

)
,

where (an)n≥1 is a decreasing geometric progression, show that the area of this
polygon is

A =
3

2
√
a1

(
1
√
a2n
− 1
√
an

)
32. Proposed by Mihály Bencze, Braşov, Romania. Let f : [a, b]→ R be a two times
differentiable function such that f ′′ and f ′ are continuous. If m = min

x∈[a,b]
f ′′(x) and

M = max
x∈[a,b]

f ′′(x), then prove that

m (b2 − a2)
2

≤ bf ′(b)− af ′(a)− f(b) + f(a) ≤ M (b2 − a2)
2

33. Proposed by Ovidiu Furdui, Cluj, Romania. Find the value of

lim
n→∞

∫ π/2

0

n
√

sinn x+ cosn x dx

34. Proposed by Mihály Bencze, Braşov, Romania. Solve the following equation√
2 +

√
2 + . . .+

√
2 + x︸ ︷︷ ︸

n-times

+

√
2−

√
2 + . . .+

√
2 + x︸ ︷︷ ︸

n-times

= x
√

2,

where n ≥ 3.

35. Proposed by Florin Stanescu, School Cioculescu Serban, Gaesti, jud. Dambovita,
Romania. Let P (x) = anx

n + an−1x
n−1 + ... + a1x + a0 be a polynomial with

strictly positive real coefficients of degree n ≥ 3, such that P ′ has only real zeros.
If 0 ≤ a < b show that∫ b

a
1

P ′(x)dx∫ b
a

1
P ′′(x)dx

≥ 1
b− a

ln
(
P ′(b)
P ′(a)

)
≥ P ′(b)− P ′(a)

P (b)− P (a)
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

22. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let x, y, z be positive real numbers. Prove that∑

cyc

4x(x+ 2y + 2z)
(x+ 3y + 3z)2

≥
∑
cyc

(x+ y)(3x+ 3y + 4z)
(2x+ 2y + 3z)2

Solution by Albert Stadler, Switzerland. Obviously∑
cyc

(x+ y)(3x+ 3y + 3z)
(2x+ 2y + 3z)2

=
∑
cyc

(y + z)(3y + 3z + 4x)
(2y + 2z + 3x)2

The inequality then reads as∑
cyc

4x(x+ 2y + 2z)
(x+ 3y + 3z)2

≥
∑
cyc

(y + z)(3y + 3z + 4x)
(2y + 2z + 3x)2

By homogeneity, we can assume that x+ y + z = 1. So, we have to prove that∑
cyc

(
4x(2− x)
(3− 2x)2

− (1− x)(3 + x)
(2 + x)2

)
=
∑
cyc

(1− 3x)(3y + 3z + 4x)
(2y + 2z + 3x)2

≥ 0.

Let

f(x) =
(1− 3x)(4x2 + 5x− 27)

(3− 2x)2(2 + x)2
, and g(x) =

864
343

(
x− 1

3

)
.

We observe that g(x) is the tangent to the graph of f(x) at x = 1/3, because

f ′
(

1
3

)
=
−3
(

4
(

1
3

)2 + 5
(

1
3

)
− 27

)
(

3− 2
(

1
3

)2) (2 + 1
3

)2 =
864
343

We claim that f(x) ≥ g(x), for 0 ≤ x ≤ 1. Indeed

(1− 3x)(4x2 + 5x− 27)
(3− 2x)2(2 + x)2

−864
343

(
x− 1

3

)
=

(1− 3x)2(1107 + 1580x− 512x2 − 384x3)
343(3− 2x)2(2 + x)2

,

and clearly, 1107 + 1580x− 512x2 − 384x3 > 0, for 0 ≤ x ≤ 1. So∑
cyc

(1− 3x)(3y + 3z + 4x)
(2y + 2z + 3x)2

=
∑
cyc

f(x) ≥
∑
cyc

g(x) = 0

Also solved by the proposer

23. Proposed by Paolo Perfetti, department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let f be a real, integrable function defined on [0, 1] such that
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0
f(x)dx = 0 and m = min

0≤x≤1
f(x), M = max

0≤x≤1
f(x). Let us define F (x) =∫ x

0
f(y)dy. Prove that

∫ 1

0

F 2(x)dx ≤ −mM
6(M −m)2

(3M2 − 8mM + 3m2)

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. First, we observe that

−mM
6(M −m)2

(3M2 − 8mM + 3m2) = −mM
2

+
m2M2

3(M −m)2
≥ m2M2

3(M −m)2

and we will prove the following

Proposition. Let f be a nonzero real, integrable function defined on [0, 1] such
that

∫ 1

0
f(x)dx = 0 and m = min0≤x≤1 f(x), M = max0≤x≤1 f(x), and let F (x) =∫ x

0
f(y)dy, then

∫ 1

0

F 2(x)dx ≤ m2M2

3(M −m)2
, with equality if and only if f coincides

for almost every x in [0, 1] with one of the functions f0 or f1 defined by

f0(x) =


M if x ∈

[
0, −mM−m

)
m if x ∈

[
−m
M−m , 1

] f1(x) =


m if x ∈

[
0, M

M−m

)
M if x ∈

[
M

M−m , 1
]

Proof. Since f is integrable, F is continuous on [0, 1]. If F = 0, (i.e. f = 0 a.e.)
there is nothing to be proved. So, in what follows we will suppose that F 6= 0. The
continuity of F shows that the set O = {x ∈ (0, 1) : F (x) 6= 0} is an open set.
Moreover, since F (0) = F (1) = 0, we see that F (t) = 0 for every t ∈ [0, 1] \O. The
open set O is the union of at most denumerable family of disjoint open intervals.
Thus there exist N ⊂ N and a family (In)n∈N of non-empty disjoint open sub-
intervals of (0, 1) such that O = ∪n∈N In. Suppose that In = (an, bn). Since an
and bn belong to [0, 1] \ O, we conclude that F (an) = F (bn) = 0, while F keeps a
constant sign on In. Let us consider two cases :

(a) F (x) > 0 for x ∈ In. From m ≤ f ≤M we conclude that, for x ∈ In, we have

F (x) = F (x)− F (an) =
∫ x

an

f(t) dt ≤M(x− an)

and

F (x) = −(F (bn)− F (x)) =
∫ bn

x

(−f)(t) dt ≤ −m(bn − x) = m(x− bn)

So,

∀x ∈ In, 0 < F (x) ≤ min(M(x− an),m(x− bn)),
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and consequently∫
In

F 2(x) dx ≤
∫ bn

an

(min(M(x− an),m(x− bn)))2 dx

=
∫ an−m(bn−an)/(M−m)

an

M2(x− an)2dx+
∫ bn

bn−M(bn−an)/(M−m)

m2(bn − x)2 dx

= M2

∫ m(an−bn)/(M−m)

0

x2dx+m2

∫ M(bn−an)/(M−m)

0

x2dx

=
m2M2

3(M −m)2
(bn − an)3 =

m2M2

3(M −m)2
|In|3

with equality if and only if F (x) = min(M(x−an),m(x−bn)) for every x ∈ In. That
is, if and only if, f(x) = M for almost every x ∈

[
an,

Man−mbn

M−m

)
, and f(x) = m

for almost every x ∈
[
Man−mbn

M−m , bn

]
.

(b) F (x) < 0 for x ∈ In. From m ≤ f ≤M we conclude that, for x ∈ In, we have

F (x) = F (x)− F (an) =
∫ x

an

f(t) dt ≥ m(x− an)

and

F (x) = −(F (bn)− F (x)) =
∫ bn

x

(−f)(t) dt ≥ −M(bn − x)

So,

∀x ∈ In, 0 < −F (x) ≤ min(−m(x− an),M(bn − x)),

and consequently∫
In

F 2(x) dx ≤
∫ bn

an

(min(m(an − x),M(bn − x)))2 dx

=
∫ an+M(bn−an)/(M−m)

an

m2(x− an)2dx+
∫ bn

bn+m(bn−an)/(M−m)

M2(bn − x)2 dx

= m2

∫ M(bn−an)/(M−m)

0

x2dx+M2

∫ −m(bn−an)/(M−m)

0

x2dx

=
m2M2

3(M −m)2
(bn − an)3 =

m2M2

3(M −m)2
|In|3,

with equality if and only if F (x) = max(m(x−an),M(x−bn)) for every x ∈ In. That
is, if and only if, f(x) = m for almost every x ∈

[
an,

Mbn−man

M−m

)
, and f(x) = M

for almost every x ∈
[
Mbn−man

M−m , bn

]
.

So, in both cases we have∫
In

F 2(x) dx ≤ m2M2

3(M −m)2
|In|3
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and consequently∫ 1

0

F 2(x) dx =
∑
n∈N

∫
In

F 2(x) dx ≤ m2M2

3(M −m)2
∑
n∈N
|In|3

≤ m2M2

3(M −m)2

(∑
n∈N
|In|

)3

=
m2M2

3(M −m)2
|O|3

≤ m2M2

3(M −m)2
,

where we used the well-known inequality
∑
n∈N λ

3
n ≤

(∑
n∈N λn

)3. The desired
inequality is, thus, proved. Moreover, the equality case can occur if and only if
O = (0, 1) and f(x) = f0(x) a.e. or f(x) = f2(x) a.e., where f0 and f1 are the
functions defined in the statement of the proposition. This completes the proof.

Also solved by the proposer

24. Proposed by D.M. Batinetu-Giurgiu, Bucharest and Neculai Stanciu, Buzau,
Romania. Let (an)n≥1, (bn)n≥1 be sequences of positive real numbers such that

lim
n→∞

an+1

n2 · an
= lim
n→∞

bn+1

n3 · bn
= a > 0. Compute

lim
n→∞

(
n+1

√
bn+1

an+1
− n

√
bn
an

)

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy. From the definition of the limit of a sequence immedia-
tely follows that

∀ ε ∃ n0 : n > n0 =⇒ a− ε < an+1

n2an
< a+ ε

∀ ε ∃ n0 : n > n0 =⇒ a− ε < bn+1

n3bn
< a+ ε

Thus for any k ≥ 1, we get

((n0 + k − 1)!)3

((n− 1)!)3
(a− ε)kbn0 ≤ bn0+k ≤

((n0 + k − 1)!)3

((n− 1)!)3
(a+ ε)kbn0

((n0 + k − 1)!)2

((n− 1)!)2
(a− ε)kan0 ≤ an0+k ≤

((n0 + k − 1)!)2

((n− 1)!)2
(a+ ε)kan0

The computations are straightforward. Now, we have

n0+k+1

√
bn0+k+1

an0+k+1
= exp

{
1

n0 + k + 1
ln
bn0+k+1

an0+k+1

}
and

(n0 + k)!
(n0 − 1)!

(
a− ε
a+ ε

)k+1
bn0

an0

≤ bn0+k+1

an0+k+1
≤ (n0 + k)!

(n0 − 1)!

(
a+ ε

a− ε

)k+1
bn0

an0
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Let us define A = a+ε
a−ε and B = bn0

(n0−1)!an0
. Using Stirling’s formulae, namely

n! = (n/e)n
√

2πn(1 + o(1)), we get

ln
bn0+k+1

an0+k+1
= (k + 1) lnA+ lnB +

+
(

(n0 + k) ln(n0 + k)− (n0 + k) +
1
2

ln(2π) +
1
2

ln(n0 + k) + ln(1 + o(1))
)

Thus,
1

n0 + k + 1
ln
bn0+k+1

an0+k+1
=

(k + 1) lnA+ (n0 + k) ln(n0 + k)− (n0 + k)
n0 + k + 1

+ o(1) =

= lnA+ ln k − 1 + o(1)

and then, using the fact that ex = 1 + o(1) when x→ 0), yields

exp
{

1
n0 + k + 1

ln
bn0+k+1

an0+k+1

}
=
Ak

e
(1 + o(1))

Subtracting we obtain

exp
{

1
n0 + k + 1

ln
bn0+k+1

an0+k+1

}
− exp

{
1

n0 + k
ln
bn0+k

an0+k

}
=

=
A

e
(1 + o(1)) =

(
a+ ε

a− ε

)
1
e

+ o(1)

Since ε is arbitrarily small, then the limit is 1/e.

Solution 2 by Anastasios Kotronis, Athens, Greece. It is well known (see[1]
p.46 for example) that zn being a sequence of positive numbers, limn→+∞

zn+1
zn

=
` ∈ R⇒ limn→+∞(zn)1/n = `. We set zn = bn

nnan
, so

zn+1

zn
=
bn+1

n3bn

(
an+1

n2an

)−1(
1 +

1
n

)−n
n

n+ 1
→ e−1

and limn→+∞(zn)1/n = e−1 on account of the preceding. Therefore,(
(n+ 1)(zn+1)1/(n+1)

n(zn)1/n

)n
=
bn+1

n3bn

(
an+1

n2an

)−1

(zn+1)−1/(n+1) n

n+ 1
→ e

Now

n+1

√
bn+1

an+1
− n

√
bn
an

= (zn)1/n

 (n+1)(zn+1)
1/(n+1)

n(zn)1/n − 1

ln
(

(n+1)(zn+1)1/(n+1)

n(zn)1/n

) ln
(

(n+ 1)(zn+1)1/(n+1)

n(zn)1/n

)n→ e−1,

since

lim
n→+∞

(n+1)(zn+1)
1/(n+1)

n(zn)1/n − 1

ln
(

(n+1)(zn+1)1/(n+1)

n(zn)1/n

) = lim
n→+∞

exp
(

ln
(

(n+1)(zn+1)
1/(n+1)

n(zn)1/n

))
− 1

ln
(

(n+1)(zn+1)1/(n+1)

n(zn)1/n

)
= lim

x→0

ex − 1
x

= 1
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Also solved by Albert Stadler, Switzerland; Moubinool Omarjee, Paris,
France; and the proposer.

25. Proposed by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona, Spain.
Let D,E, F be three points lying on the sides BC,AB,CA of ∆ABC. Let M be a
point lying on cevian AD. If E,M,F are collinear then show that(

BC ·MD

MA

)(
EA

DC · EB
+

FA

BD · FC

)
≥ 4

Solution 1 by Titu Zvonaru, Comanesti and Neculai Stanciu, George
Emil Palade Secondary School, Buzau, Romania.
We denote

a = BC,
BD

DC
= x,

AF

FC
= y,

AE

EB
= z.

We have
BD =

ax

x+ 1
, DC =

a

x+ 1
,

and by the relation (R2) from Rec. Math, 2/2011, pp. 108, we obtain that

AM

MD
=

ayz
ax
x+1 · z + a

x+1 · y
⇔ AM

MD
=
yz(x+ 1)
xz + y

Hence, the given inequality becomes

a(xz + y)
yz(x+ 1)

(
z
a
x+1

+
y
ax
x+1

)
≥ 4⇔ (xz + y)2 ≥ 4xyz ⇔ (xz − y)2 ≥ 0.

Last inequality trivially holds, and the proof is complete.

Solution 2 by the proposer. First, we write the inequality claimed as

1
2

(
BC ·MD

MA

)
≥ 2

(
EA

DC · EB
+

FA

BD · FC

)−1

On account of AM-HM inequality it will be suffice to prove that if E,M,F are
collinear then holds

BC · MD

MA
= DC · EB

EA
+BD · FC

FA

Indeed, assume that points E,M,F are collinear. It is easy to check that4EBB′ ∼
4AEA′, 4CFC ′ ∼ 4AFA′, and 4DMD′ ∼ 4AMA′. Then, we have

EB

EA
=
BB′

AA′
,

FC

FA
=
CC ′

AA′
,

MD

MA
=
DD′

AA′

and the statement becomes

DC · BB
′

AA′
+BD · CC

′

AA′
= BC · DD

′

AA′

or
DC ·BB′ +BD · CC ′ = DC ·DD′
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B'

C'

C''

D''

A'
D'

CDB

A

F
M

E

Figure 1. Problem 25

Now we distinguish two cases according to BB′ < CC ′ or BB′ > CC ′. Suppose
that BB′ < CC ′. We draw the parallel to B′C ′ that cuts line DD′ at D′′ and line

CC ′ at C ′′. Since 4BDB′′ ∼ 4BCC ′′, then
DD′′

CC ′′
=
BD

BC
from which follows

DD′′ =
BD

BC
CC ′′ =

BD

BC
(CC ′ −BB′)

Thus,

DD′ = DD′′ +D′′D′ =
BD

BC
(CC ′ −BB′) +BB′ =

BD · CC ′

BC
+BB′

(
1− BD

BC

)
=
BD · CC ′

BC
+
BB′

BC
(BC −BD) =

BD · CC ′

BC
+
CD ·BB′

BC
and the statement follows. Likewise, the same result is obtained when BB′ > CC ′.
Finally, observe that equality holds when 4ABC is equilateral and D,E, F are the
vertices if its medial triangle.

Also solved by Codreanu Ioan-Viorel, Satulung, Maramures, Romania;
Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria; and the proposer.

26. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia. De-
termine all functions f : R− {0, 1} → R, which satisfy the relation

f

(
x− 1
x

)
+ f

(
1

1− x

)
= ax2 + bx+ c,

where a, b, c ∈ R.

Solution by Valmir Bucaj, Texas Lutheran University, Seguin, TX. Let-
ting y = 1

1−x , and substituting for x in the original equation we get

f

(
1

1− y

)
+ f(y) = a

(
y − 1
y

)2

+ b

(
y − 1
y

)
+ c (1)

Similarly, letting y = x−1
x , and substituting for x we get

f(y) + f

(
y − 1
y

)
= a

(
1

1− y

)2

+ b

(
1

1− y

)
+ c (2)
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Adding (1) and (2) gives

2f(y)+f
(
y − 1
y

)
+f
(

1
1− y

)
= a

(
y − 1
y

)2

+b
(
y − 1
y

)
+a
(

1
1− y

)2

+b
(

1
1− y

)
+2c

Since,

f

(
y − 1
y

)
+ f

(
1

1− y

)
= ay2 + by + c,

after substituting in the preceding, we get

2f(y) = a

(
y − 1
y

)2

+ b

(
y − 1
y

)
+ a

(
1

1− y

)2

+ b

(
1

1− y

)
− ay2 − by + c

Finally,

f(y) =
a

2

[(
y − 1
y

)2

+
(

1
1− y

)2

− y2

]
+
b

2

[(
y − 1
y

)
+
(

1
1− y

)
− y
]

+
c

2
,

and the result follows by setting y = x.

Also solved by Albert Stadler, Switzerland; Moubinnol Omarjee, Paris,
France; Adrian Naco, Albania; Omran Kouba, Higher Institute for Ap-
plied Sciences and Technology, Damascus, Syria; and the proposer

27. Proposed by David R. Stone, Georgia Southern University, Statesboro, GA,
USA. With π(x) = the number of primes ≤ x, show that there exist constants a
and b such that

eax < xπ(x) < ebx

for x sufficiently large.

Solution by the proposer. Tchebychef proved (1850) that there exist constants
a and b such that

a
x

lnx
< π(x) < b

x

lnx
,

for x sufficiently large. Thus

xa
x

lnx < xπ(x) < xb
x

lnx

So (
x

1
lnx

)ax
< xπ(x) <

(
x

1
lnx

)bx
Therefore

eax < xπ(x) < ebx,

which concludes the proof.

Comment by the Editors. Anastasios Kotronis, Athens, Greece, let us know
that the problem solved above, apart from its first solution given by P. L. Chebyshev
in Memoire sur les nombres premiers, Journal de Math. Pures et Appl. 17 (1852),
366-390, (which is reproduced on the analytic number theory books like Tom M.
Apostol’s Introduction to analytic number theory and K. Chandrasekharan’s book
with the same title),also it has been given an elementary solution using different
methods, by M. Nair in the article On Chebyshev-type inequalities for primes,
Amer. Math. Monthly, 89, no. 2, p.126-129, (which is reproduced in the book
Introduction to analytic and probabilistic number theory by Gerald Tenenbaum).
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Also solved by Albert Stadler, Switzerland

28 Proposed by Florin Stanescu, School Cioculescu Serban, Gaesti, jud. Dambovita,
Romania. Let ABC be a triangle with semi-perimeter p. Prove that

a√
p− a

+
b√
p− b

+
c√
p− c

≥ 2
√

3p,

where [AB] = c, [AC] = b, [BC] = a.

Solution by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Let us define the positive real numbers x, y and
z by

x = 1− a

p
, y = 1− b

p
, z = 1− c

p
Clearly we have x+ y + z = 1 and

a
√
p
√
p− a

+
b

√
p
√
p− b

+
c

√
p
√
p− c

= f(x) + f(y) + f(z), (3)

where
f : (0, 1)→ R, f(t) =

1− t√
t

= t−1/2 − t1/2

The function f is convex since it is the sum of two convex functions, so

f(x) + f(y) + f(z) ≥ 3f
(
x+ y + z

3

)
= 3f

(
1
3

)
= 2
√

3, (4)

and the desired inequality follows from (3) and (4).

Also solved by Albert Stadler, Switzerland; Titu Zvonaru, Comanesti
and Neculai Stanciu, George Emil Palade Secondary School, Buzau, Ro-
mania, Bruno Salgueiro Fanego, Viveiro, Spain; and the proposer.
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MATHCONTEST SECTION

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
21. Let a > −3/4 be a real number. Show that

3

√
a+ 1

2
+
a+ 3

6

√
4a+ 3

3
+

3

√
a+ 1

2
− a+ 3

6

√
4a+ 3

3
is an integer and determine its value.

22. Let a1, a2, a3, a4 be nonzero real numbers defined by ak =
sin(kβ + α)

sin kβ
,

(1 ≤ k ≤ 4), α, β ∈ R. Calculate∣∣∣∣∣∣
1 + a2

1 + a2
2 a1 + a2 + 1/a4 1 + a2(a1 + a3)

a1 + a2 + 1/a4 2 + 1/a2
4 a2 + a3 + 1/a4

1 + a2(a1 + a3) a2 + a3 + 1/a4 1 + a2
2 + a2

3

∣∣∣∣∣∣
23. Let A be a set of positive integers. If the prime divisors of elements in A are
among the prime numbers p1, p2, . . . , pn and |A| > 3 · 2n + 1, then show that it
contains one subset of four distinct elements whose product is the fourth power of
an integer.

24. Find all triples (x, y, z) of real numbers such that

12x− 4z2 = 25,
24y − 36x2 = 1,
20z − 16y2 = 9.


25. Let a, b, c be the lengths of the sides of a triangle ABC with inradius r and
cicumradius R. Prove that

r

2r +R
≤ 3

√(
a

b+ c+ 2a

)(
b

c+ a+ 2b

)(
c

a+ b+ 2c

)
≤ 1

4
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Solutions
16. A number of three digits is written as xyz in base 7 and as zxy in base 9. Find
the number in base 10.

(III Spanish Math Olympiad (1965-1966))

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. To write a number in the system of base 7 the only integers used are
0, 1, 2, 3, 4, 5, 6, and to write it in base 9 only the integers form 0 to 8 are used.
Consequently, x, y, z ∈ {0, 1, 2, 3, 4, 5, 6}. The number xyz in base 7 represents the
number x · 72 + y · 7 + z in base 10. On the other hand, the number zxy in base 9
represents the number z · 92 + y · 9 + x in base 10. Therefore,

x · 72 + y · 7 + z = z · 92 + y · 9 + x

from which follows 8(3x − 5z) = y. Since x, y, z are integers ranging form 0 to 6,
then y = 0 and 3x = 5y. From the preceding, we have x = z = 0 or x = 5 and
z = 3. In the first case, we obtain the number 000 which does not have three digits;
and from the second, we get the number 503 in base 7 and 305 in base 9. Both
numbers in base 10 are the number 248 and this is the answer. 2

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain.

17. A regular convex polygon of L+M+N sides must be colored using three colors:
red, yellow and blue, in such a way that L sides must be red, M yellow and N blue.
Give the necessary and sufficient conditions, using inequalities, to obtain a colored
polygon with no two consecutive sides of the same color.

(XI Spanish Math Olympiad (1973-1974))

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. Let K = L+M +N. We distinguish two cases: (a) K is even, then it must
be

L ≤ K

2
, M ≤ K

2
, N ≤ K

2
That is, L+M ≥ N, L+N ≥M and M +N ≥ L.

(b) If K is odd, then it must be

0 < L ≤ K − 1
2

, 0 < M ≤ K − 1
2

, 0 < N ≤ K − 1
2

That is, L + M > N > 0, L + N > M > 0 and M + N > L > 0. We claim
that these conditions that are necessary are also sufficient. Indeed, WLOG we can
assume that L ≥ M ≥ N, independently of the parity of K. We begin coloring
in red sides first, third, fifth,... from the starting point in a circular sense until
complete L red sides. Then, remains to be colored L − 1 non consecutive sides
and K − (2L − 1) = M + N − L + 1 ≥ 1 consecutive sides. Since L ≥ M, then
M +N − L+ 1 ≤ N + 1, therefore this set of consecutive sides can not be colored
alternatively yellow-blue-yellow, etc., without painting two consecutive sides of the
same color. Finally, the non consecutive L−1 sides are colored yellow or blue until
to complete the M yellow sides and the N blue sides, and our claim is proven.
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2

Also solved by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain.

18. Let ABDC be a cyclic quadrilateral inscribed in a circle C. Let M and N be
the midpoints of the arcs AB and CD which do not contain C and A respectively.
If MN meets side AB at P, then show that

AP

BP
=
AC +AD

BC +BD

(IMAC 2011)

Solution by Ivan Geffner Fuenmayor, Technical University of Catalonia
(BARCELONA TECH), Barcelona, Spain. Applying Ptolemy’s theorem to
the inscribed quadrilateral ACND, we have

AD · CN +AC ·ND = AN · CD
Since N is the midpoint of the arc CD, then we have CN = ND = x, and

M

P

N

C

D

BA

Figure 2. Problem 18

AN ·CD = (AC+AD)x. Likewise, considering the inscribed quadrilateral CNDB
we have BN · CD = (BD +BC)x. Dividing the preceding expressions, yields

AN

BN
=
AC +AD

BD +BC

Applying the bisector angle theorem, we have
AN

BN
=
AP

BP
This completes the proof.

2
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Also solved by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria; and José Gibergans Báguena, BARCE-
LONA TECH, Barcelona, Spain.

19. Place n points on a circle and draw in all possible chord joining these points.
If no three chord are concurrent, find (with proof) the number of disjoint regions
created.

(IMAC-2011)

Solution 1 by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain. First, we prove that if a convex region crossed by L lines with P interior
points of intersection, then the number of disjoint regions created is RL = L+P+1.
To prove the preceding claim, we argue by Mathematical Induction on L. Let R be
an arbitrary convex region in the plane. For each L ≥ 0, let A(L) be the statement
that for each P ∈

{
1, 2, . . . ,

(
L
2

)}
, if L lines that cross R, with P intersection points

inside R, then the number of disjoint regions created inside R is RL = L+ P + 1.

When no lines intersect R, then P = 0, and so, R0 = 0 + 0 + 1 = 1 and A(0) holds.
Fix some K ≥ 0 and suppose that A(K) holds for K lines and some P ≥ 0 with
RK = K + P + 1 regions. Consider a collection C of K + 1 lines each crossing R
(not just touching), choose some line ` ∈ C, and apply A(K) to C\{`} with some P
intersection points inside R and RK = K +P + 1 regions. Let S be the number of
lines intersecting ` inside R. Since one draws a (K + 1)−st line `, starting outside
R, a new region is created when ` first crosses the border of R, and whenever `
crosses a line inside of R. Hence the number of new regions is S + 1. Hence, the
number of regions determined by the K + 1 lines is, on account of A(K),

RK+1 = RK + S + 1 = (K + P + 1) + S + 1 = (K + 1) + (P + S) + 1,

where P+S is the total number of intersection points inside R. Therefore, A(K+1)
holds and by the PMI the claim is proven.

Finally, since the circle is convex and any intersection point is determined by a

unique 4−tuple of points, then there are P =
(
n

4

)
intersection points and L =

(
n

2

)
chords and the number of regions is R =

(
n

4

)
+
(
n

2

)
+ 1.

2

Solution 2 by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria. Let us denote by an the number of disjoint
regions created. Clearly a1 = 1, a2 = 2 and a3 = 4. Suppose that we have an
regions obtained on placing the n points A1, . . . , An in this order, and let us add
the n+ 1st point A0 on the arc AnA1 that does not contain any other point. The
chords A0A1 and A0An add two regions. And for 1 < k < n, there are (k−1)(n−k)
points of itersection of the chord A0Ak with the other chords. Hence, the chord
A0Ak passes through (k − 1)(n− k) + 1 regions. Consequently, drawing the chord
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A0Ak adds (k − 1)(n− k) + 1 new regions. Thus

an+1 = an +
n∑
k=1

((k − 1)(n− k) + 1)

But

n∑
k=1

((k − 1)(n− k) + 1) = −
n∑
k=1

k2 + (n+ 1)
n∑
k=1

k + (1− n)n

= −n(n+ 1)(2n+ 1)
6

+
n(n+ 1)2

2
− n(n− 1)

=
(
n+ 2

3

)
− 2
(
n

2

)
So,

an = 1 +
n−1∑
k=1

(
k + 2

3

)
− 2

n−1∑
k=1

(
k

2

)

= 1 +
n−1∑
k=1

((
k + 3

4

)
−
(
k + 2

4

))
− 2

n−1∑
k=1

((
k + 1

3

)
−
(
k

3

))
= 1 +

(
n+ 2

4

)
− 2
(
n

3

)
=
(
n

4

)
+
(
n

2

)
+ 1

which is the required number of regions. 2

Also solved by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain.

20. Let a, b, c be positive real numbers such that a+ b+ c = 1. Prove that

3

√(
1 + a

b+ c

) 1−a
bc
(

1 + b

c+ a

) 1−b
ca
(

1 + c

a+ b

) 1−c
ab

≥ 64

(József Wildt Competition 2009)

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,

Spain. Consider the function f : (0, 1) → R defined by f(x) =
1
x

ln
(

1 + x

1− x

)
.

Since f(x) = 2
∞∑
k=0

x2k

2k + 1
for |x| < 1, then f ′(x) = 4

∞∑
k=0

kx2k−1

2k + 1
(|x| < 1) and

f ′′(x) = 4
∞∑
k=0

k(2k − 1)x2k−2

2k + 1
(|x| < 1). Therefore, f ′(x) > 0 and f ′′(x) > 0 for all

x ∈ (0, 1), and f is increasing and convex.
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Applying Jensen’s inequality, we have f
(
a+ b+ c

3

)
≤ f(a) + f(b) + f(c)

3
or equiva-

lently,

3
a+ b+ c

ln
(

3 + (a+ b+ c)
3− (a+ b+ c)

)
≤ 1

3

[
ln
(

1 + a

1− a

)1/a

+ ln
(

1 + b

1− b

)1/b

+ ln
(

1 + c

1− c

)1/c
]

Taking into account that a+ b+ c = 1 and the properties of logarithms, we get

3

√(
1 + a

1− a

)1/a(1 + b

1− b

)1/b(1 + c

1− c

)1/c

≥ 8 (5)

WLOG we can assume that a ≥ b ≥ c. We have,
1
a
≤ 1
b
≤ 1
c

and g(a) ≥ g(b) ≥

g(c), where g is the increasing function defined by g(x) = ln
(

1 + x

1− x

)
. Applying

rearrangement’s inequality, we get
1
b
g(a) +

1
c
g(b) +

1
a
g(c) ≥ 1

a
g(a) +

1
b
g(b) +

1
c
g(c)

or (
1 + a

1− a

)1/b(1 + b

1− b

)1/c(1 + c

1− c

)1/a

≥
(

1 + a

1− a

)1/a(1 + b

1− b

)1/b(1 + c

1− c

)1/c

From the preceding and (5) we obtain

3

√(
1 + a

b+ c

)1/b(1 + b

c+ a

)1/c(1 + c

a+ b

)1/a

= 3

√(
1 + a

1− a

)1/b(1 + b

1− b

)1/c(1 + c

1− c

)1/a

≥ 3

√(
1 + a

1− a

)1/a(1 + b

1− b

)1/b(1 + c

1− c

)1/c

≥ 8

Likiwise, applying rearrangement’s inequality again, we get
1
c
g(a) +

1
a
g(b) +

1
b
g(c) ≥ 1

a
g(a) +

1
b
g(b) +

1
c
g(c)

and

3

√(
1 + a

b+ c

)1/c(1 + b

c+ a

)1/a(1 + c

a+ b

)1/b

= 3

√(
1 + a

1− a

)1/c(1 + b

1− b

)1/a(1 + c

1− c

)1/b

≥ 3

√(
1 + a

1− a

)1/a(1 + b

1− b

)1/b(1 + c

1− c

)1/c

≥ 8

Multiplying up the preceding inequalities yields,

3

√(
1 + a

b+ c

) 1
b + 1

c
(

1 + b

c+ a

) 1
c + 1

a
(

1 + c

a+ b

) 1
a + 1

b

≥ 64

from which the statement follows. Equality holds when a = b = c = 1/3, and we
are done. 2

Also solved by José Gibergans Báguena, BARCELONA TECH, Barcelona,
Spain.
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MATHNOTES SECTION

On a Discrete Constrained Inequality

Mihály Bencze and José Luis D́ıaz-Barrero

Abstract. In this note a constrained inequality is generalized and some refine-
ments and applications of it are also given.

1. Introduction

In [1] the following problem was posed: Let a, b, c be positive real numbers such that
a+ b+ c = 1. Prove that

(ab+ bc+ ca)
(

a

b2 + b
+

b

c2 + c
+

c

a2 + a

)
≥ 3

4
(6)

A solution to the preceding proposal and some related results appeared in [2]. Our
aim in this short paper is to generalize it and to give some of its applications.

2. Main Results

In the sequel some generalizations and refinements of (6) are given. We begin with

Theroem 1. Let x and ak, bk, (1 ≤ k ≤ n) be positive real numbers. Then(
n∑
k=1

ak

)(
n∑
k=1

ak
(x+ bk)2

)
≥

(
n∑
k=1

ak
x+ bk

)2

≥

(
n∑
k=1

ak

)4/(
n∑
k=1

ak(x+ bk)

)2

Proof. Setting ~u =
( √

a1

x+b1
,
√
a2

x+b2
, . . . ,

√
an

x+bn

)
and ~v =

(√
a1,
√
a2, . . . ,

√
an
)

into CBS
inequality, we have(

n∑
k=1

ak
x+ bk

)2

=

(
n∑
k=1

√
ak

x+ bk

√
ak

)2

≤

(
n∑
k=1

ak

)(
n∑
k=1

ak
(x+ bk)2

)
and the LHS inequality is proven. To prove RHS inequality we set
~u =

(√
a1
x+b1

,
√

a2
x+b2

, . . . ,
√

an

x+bn

)
and ~v =

(√
a1(x+ b1),

√
a2(x+ b2), . . . ,

√
an(x+ bn)

)
into CBS inequality again and we get(

n∑
k=1

ak

)2

≤

(
n∑
k=1

ak
x+ bk

)(
n∑
k=1

ak(x+ bk)

)
from which the statement immediately follows. �

A constrained inequality that can be derived immediately from the preceding result
is given in the following
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Corllary 1. Let ak, bk, (1 ≤ k ≤ n) be positive real numbers such that
∑n
k=1 ak = 1.

Then holds: (
n∑
k=1

ak(1 + bk)2
) n∑

k=1

ak
(1 + bk)2

+

(
n∑
k=1

ak
1 + bk

)2
 ≥ 2

Proof. Setting x = 1 in Theorem 1, we get(
n∑
k=1

ak(1 + bk)2
)(

n∑
k=1

ak
(1 + bk)2

)
≥ 1

and (
n∑
k=1

ak(1 + bk)2
)(

n∑
k=1

ak
1 + bk

)2

≥ 1

Adding up the preceding inequalities the statement follows.
�

Theroem 2. Let 0 ≤ y < z and ak, bk, (1 ≤ k ≤ n) be positive real numbers. Then(
n∑
k=1

ak

)(
n∑
k=1

ak
(y + bk)(z + bk)

)

≥

 n∑
k=1

a2
k

(y + bk)(z + bk)
+ log

∏
1≤i<j≤n

(
(y + bj)(z + bi)
(y + bi)(z + bj)

) 2aiaj
bj−bi


≥

(
n∑
k=1

ak

)4/[(
y

n∑
k=1

ak +
n∑
k=1

akbk

)(
z

n∑
k=1

ak +
n∑
k=1

akbk

)]

Proof. From Theorem 1, we have∫ z

y

(
n∑
k=1

ak

)(
n∑
k=1

ak
(x+ bk)2

)
dx ≥

∫ z

y

(
n∑
k=1

ak
x+ bk

)2

dx

≥
∫ z

y

( n∑
k=1

ak

)4/(
n∑
k=1

ak(x+ bk)

)2
 dx.

After a little straightforward algebra the statement follows and the proof is com-
plete.

�

Corllary 2. Let y < z and ak, bk, (1 ≤ k ≤ n) be strictly positive real numbers.
Then exists c ∈ (y, z) such that(

n∑
k=1

ak

)(
n∑
k=1

ak
(y + bk)(z + bk)

)
≥

(
n∑
k=1

ak
c+ bk

)2

≥

(
n∑
k=1

ak

)4/[(
y

n∑
k=1

ak +
n∑
k=1

akbk

)(
z

n∑
k=1

ak +
n∑
k=1

akbk

)]
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Proof. Applying Lagrange’s Mean Value Theorem to the function

f(x) =
∫ x

0

(
n∑
k=1

ak
t+ bk

)2

dt yields,
∫ z

y

(
n∑
k=1

ak
t+ bk

)2

dt = (z−y)

(
n∑
k=1

ak
c+ bk

)2

Putting this in Theorem 2 the inequality claimed follows and this completes the
proof. �

Applying again Theorem 2 with y = 0 and z = 1, we get

Corllary 3. Let ak, bk, (1 ≤ k ≤ n) be positive real numbers such that
∑n
k=1 ak = 1.

Then
n∑
k=1

ak
bk(1 + bk)

≥
n∑
k=1

a2
k

bk(1 + bk)
+ log

∏
1≤i<j≤n

(
bj(1 + bi)
bi(1 + bj)

) 2aiaj
bj−bi

≥ 1(
n∑
k=1

akbk

)(
1 +

n∑
k=1

akbk

)
Corllary 4. Let ak (1 ≤ k ≤ n) be positive real numbers such that

∑n
k=1 ak = 1.

Then∑
cyclic

a1

a2(1 + a2)
≥
∑
cyclic

a2
1

a2(1 + a2)
+ log

∏
1≤i<j≤n

(
aj+1(1 + ai+1

ai+1(1 + aj+1

) 2aiaj
aj+1−ai+1

≥ 1∑
cyclic

a1a2

1 +
∑
cyclic

a1a2


Proof. Setting bk = ak+1, (1 ≤ k ≤ n) and an+1 = a1 into the preceding corollary
the statement follows. �

Notice that this result is a generalization and refinement of the inequality posed in
[1]. Indeed, for n = 3 we have

Corllary 5. Let a, b, c be positive numbers of sum one. Prove that

a

b(1 + b)
+

b

c(1 + c)
+

c

a(1 + a)
≥ a2

b(1 + b)
+

b2

c(1 + c)
+

c2

a(1 + a)

+ log

((
a(1 + c)
c(1 + a)

) 2bc
a−c

(
b(1 + a)
a(1 + b)

) 2ca
b−a
(
c(1 + b)
b(1 + c)

) 2ab
c−b

)
≥ 9

4
.

Proof. Taking into account that for all a, b, c positive numbers with sum one is
ab+ bc+ ca ≤ 1

3 (a+ b+ c)2 ≤ 1
3 and corollary 4, we get

a

b(1 + b)
+

b

c(1 + c)
+

c

a(1 + a)
≥ a2

b(1 + b)
+

b2

c(1 + c)
+

c2

a(1 + a)

+ log

((
a(1 + c)
c(1 + a)

) 2bc
a−c

(
b(1 + a)
a(1 + b)

) 2ca
b−a
(
c(1 + b)
b(1 + c)

) 2ab
c−b

)
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≥ 1
(ab+ bc+ ca)(1 + ab+ bc+ ca)

≥ 9
4

�

Finally, combining the inequality posed in [1] by Dospinescu and the inequality
presented in [2] by Janous, namely

(xy + yz + zx)
(

x

1 + y2
+

y

1 + z2
+

z

1 + x2

)
≤ 3

4
(x+ y + z = 1),

two applications are given.

Problem 1. Let a, b, c be positive real numbers. Prove that∑
cyclic

a

b(a+ 2b+ c)
≥ 3(a+ b+ c)

4(ab+ bc+ ca)
≥
∑
cyclic

a

b2 + (a+ b+ c)2

Solution. Putting x = a
a+b+c , y = b

a+b+c and x = c
a+b+c into∑

cyclic

xy

∑
cyclic

x

y(1 + y)

 ≥ 3
4
≥

∑
cyclic

xy

∑
cyclic

x

1 + y2


the statement follows. 2

Setting in the expressions of x, y, z the elements of a triangle ABC and applying the
previous procedure new inequalities for the triangle can be derived. For instance,
using the sides a, b, c and the radii of ex-circles ra, rb, rc, we have the following
inequalities similar to the ones appeared in [3].

Problem 2. Let ABC be a triangle. Prove that

(1)
∑
cyclic

a

b(2s+ b)
≥ 3s

2(s2 + r2 + 4rR
≥
∑
cyclic

a

4s2 + b2
,

(2)
∑
cyclic

ra
rb(4R+ r + rb)

≥ 3s
4r(4R+ r)

≥
∑
cyclic

ra
r2b + (4R+ r)

,

where the notations are usual.
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